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a b s t r a c t

We develop a locally conservative Eulerian–Lagrangian finite volume scheme with the
weighted essentially non-oscillatory property (EL–WENO) in one-space dimension. This
method has the advantages of both WENO and Eulerian–Lagrangian schemes. It is formally
high-order accurate in space (we present the fifth order version) and essentially non-
oscillatory. Moreover, it is free of a CFL time step stability restriction and has small time
truncation error. The scheme requires a new integral-based WENO reconstruction to han-
dle trace-back integration. A Strang splitting algorithm is presented for higher-dimensional
problems, using both the new integral-based and pointwise-based WENO reconstructions.
We show formally that it maintains the fifth order accuracy. It is also locally mass conser-
vative. Numerical results are provided to illustrate the performance of the scheme and ver-
ify its formal accuracy.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Given a(x, t), consider the one (and later, two) space dimensional initial value problem for a hyperbolic advection equation

@u
@t
þ @ðauÞ

@x
¼ rt;x �

uðx; tÞ
aðx; tÞuðx; tÞ

� �
¼ 0; x 2 R; t > 0; ð1:1Þ

uðx;0Þ ¼ u0ðxÞ; x 2 R: ð1:2Þ

The object of this paper is to develop an Eulerian–Lagrangian weighted essentially non-oscillatory (EL–WENO) finite volume
scheme for this one space dimensional problem, as well as to extend it to multiple dimensions.

Both essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) methods [12–14,16,17,20] have pro-
ven to be very successful schemes with high-order accuracy when handling hyperbolic equations in many applications. ENO/
WENO schemes use the idea of adaptive stencils in the reconstruction procedure based on the local smoothness of the
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numerical solution to automatically achieve high-order accuracy and a nonoscillatory property near discontinuities. How-
ever, both ENO and WENO (or any scheme with an Eulerian approach) are explicit schemes designed on a fixed grid, so they
suffer from a CFL time step stability restriction.

Schemes using an Eulerian–Lagrangian or semi-Lagrangian approach [1,2,4,6,8–11,19,26,27] look to characteristic analysis
to aid in solving the problem. They have in common the fact that the advection is treated by a characteristic tracing algo-
rithm (a Lagrangian frame of reference) from a fixed Eulerian grid over each time step. These methods have the significant
advantage that CFL number restrictions of purely Eulerian methods are alleviated because of the Lagrangian nature of the
advection. Furthermore, because the spatial and temporal dimensions are coupled through the characteristic tracing, the
influence of time truncation error is greatly reduced.

Recently, Qiu, Christlieb, and Shu [21–23] derived semi-Lagrangian (i.e., Eulerian–Lagrangian) WENO finite difference
schemes for the advection equation. Those schemes do not suffer the CFL time step restriction. However, the schemes in
[21,23] could only handle the constant convection case, i.e., a(x, t) = a. The scheme in [22] removes this restriction. In their
work, the integral form of (1.1) is taken over a triangular region, and this is used to reconstruct a high-order flux in a con-
servative scheme. However, they did not develop theoretically a fifth order method.

Carrillo and Vecil [5, Section 3.5] also proposed two semi-Lagrangian schemes for a variable advection equation. Their
first scheme requires knowledge of the derivative of the characteristic curves with respect to the initial point, which is
not normally available. This scheme is also not conservative. Their second scheme is a flux balance method. It was developed
for the constant velocity case, and its extension to variable velocity was mentioned in passing, devoid of details regarding its
definition and implementation. The implication seems to be that one should reconstruct the solution as in the constant
velocity case and simply integrate it over the trace-back region (so, in particular, no integral-based reconstruction was pro-
vided). Moreover, no extension to multi-dimensions was given.

The new scheme we develop follows the Eulerian–Lagrangian framework of the Characteristics-Mixed Method [1,2,4],
introduced by Arbogast, Chilakapati, and Wheeler, and the Finite Difference Locally Conservative Eulerian–Lagrangian Meth-
od, introduced by Douglas and Huang [9]. In this framework, we trace along the characteristics each computational Eulerian
grid cell or element E backward in time over the time step to its Lagrangian trace-back region Ě. Average mass is simply
transported from the trace-back region Ě to the grid cell E. This is the most natural way to apply the Eulerian–Lagrangian
approach, the scheme conserves mass locally, and it is simple and efficient to compute in one-dimension. However, it leaves
us with a low order finite volume method [3,4,9].

We will combine this framework with a WENO reconstruction for high-order approximation in the spatial variable at the
previous time level. Our locally conservative finite volume scheme achieves the advantages of both WENO and Eulerian–
Lagrangian schemes. That is, our scheme is not only high-order accurate and essentially non-oscillatory in space, but it is
also CFL time step stability limit free and has small time truncation error.

To be a bit more precise, in the Eulerian–Lagrangian framework, as one traces E to Ě, one sweeps out a space–time region.
The integral form of (1.1) is applied over this space–time region. Since fluid flux across the two space–time side-lateral
boundaries vanish, the integral of the mass over E at the advanced time level is equal to the integral of the mass over the
non-grid cell Ě at the earlier time level. The WENO reconstruction is applied at the earlier time level from grid cell average
values. The novelty of our approach is that we devise a WENO reconstruction that targets high-order approximation of these
trace-back integrals. In [18], a detailed study of WENO reconstruction and interpolation was given, including treatment of
high-order integration given point values. The specific result we need is high-order integration given cell-average values,
which we develop in this paper. We require a possibly different reconstruction for each subinterval arising from decompos-
ing Ě into the original Eulerian grid. In fact, we provide only the fifth-order reconstruction, since this was missing from the
finite difference approach taken in [22].

Once it is understood how to approximate the one-dimensional problem (1.1), the higher dimensional problem can be
handled by Strang splitting [7,25]. Now our grid cells are tensor-products of intervals, such as E � F, and, for example, a
Strang split solution in x would involve the trace-back region Ě � F. An integral over the Ě part of this region can be computed
using our one-dimensional integral-based WENO reconstruction. However, the integration over F requires quadrature, and
so a special treatment is needed to maintain local mass conservation. To maintain accuracy, we need also a traditional, high
order, pointwise-based WENO reconstruction. We show formally that our two-dimensional, finite volume scheme is fifth-
order convergent in space and locally mass conservative. Numerical examples also bear this out.

The paper is organized as follows. We provide the local mass conservation relation in Section 2, which is the foundation of
all Eulerian–Lagrangian type schemes. In Section 3, we derive the linear and nonlinear weight functions for the WENO recon-
struction procedure and define the reconstructed polynomials for fifth order accurate integration and interpolation. We de-
fine our locally conservative, finite volume scheme for one-dimensional problems in Section 4. A two space dimensional
version is given in Section 5, using a Strang splitting technique. We also show the formal fifth order spatial accuracy of this
two-dimensional, finite volume method and its local mass conservation. Sections 6 and 7 demonstrate the numerical perfor-
mance of the proposed one and two space dimensional schemes. We conclude the paper in Section 8.

2. The local conservation relation

For h > 0, let the spatial grid be defined, respectively, by midpoints and grid points
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xi :¼ ih and xi�1=2 :¼ ði� 1=2Þh

and then the grid cells or elements are

Ei :¼ ½xi�1=2; xiþ1=2�:

For Dt > 0 and any function v(x, t), let the time levels be

tn :¼ nDt and vn
i :¼ vðxi; tnÞ:

Let z(t;x) be the solution of the final value problem given by

dz
dt
¼ aðz; tÞ; zðtnþ1; xÞ ¼ x ð2:1Þ

and set

�xn :¼ �xnðxÞ :¼ zðtn; xÞ: ð2:2Þ

We call �xn the trace-back or predecessor point of x. Then the trace-back or predecessor set corresponding to Ei at time level tn is
defined as

�En
i :¼ �xn

i�1=2; �x
n
iþ1=2

h i
:¼ �xnðxi�1=2Þ; �xnðxiþ1=2Þ
� �

: ð2:3Þ

Define the space–time region Enþ1
i � R� ðtn; tnþ1Þ to be the set contained between Ei � ftnþ1g; �En

i � ftng, and the two integral

curves z(t;xi±1/2), tn < t < tn+1. If the lateral boundary of Enþ1
i is Snþ1

i , so that @Enþ1
i ¼ Ei [ �En

i [ S
nþ1
i , we note that the normal to

@Enþ1
i along Snþ1

i is orthogonal to the vector (u,a(x, t)u). Thus (1.1) and (1.2) and the (space–time) divergence theorem imply
that Z

Enþ1
i

rt;x �
uðx; tÞ

aðx; tÞuðx; tÞ

� �
dxdt ¼

Z
Ei

unþ1ðxÞdx�
Z

�En
i

unðxÞdx ¼ 0: ð2:4Þ

The approximation of the advection will be based on this relation expressing local mass conservation.

3. The WENO reconstructions

We will assume in this section that the trace-back points (and therefore the trace-back sets �En
i ) are found exactly. We will

revisit this assumption later in Section 4 when we describe the time discretization. Let �unþ1
i be the finite volume numerical

approximation

�unþ1
i � 1

h

Z
Ei

unþ1ðxÞdx ¼ 1
h

Z
�En

i

unðxÞdx

by (2.4). Therefore we define �unþ1
i by

�unþ1
i :¼ 1

h

Z
�En

i

Rnðx; �unÞdx; ð3:1Þ

where Rnðx; �unÞ is a piecewise-polynomial reconstruction of �un
j

n o
j

with local in space truncation error accuracy of Oðhsþ1Þ for
smooth solutions. That is, we requireZ

�En
i

Rnðx; �unÞdx ¼
Z

�En
i

unðxÞdxþOðhsþ1Þ ð3:2Þ

assuming that the solution is correct up to time tn. The main difficulty lies in determining how to define such a reconstruc-
tion Rnðx; �unÞ, and this is described below in Sections 3.1 and 3.2 for s = 5.

Once we have the reconstruction, by (2.4), we then have thatX
i

1
h

Z
Ei

uðx; tnþ1Þdx� �unþ1
i

���� ����h ¼ OðhsÞ: ð3:3Þ

Moreover, having �unþ1
i

� �
i, we could apply a standard WENO reconstruction or postprocessing to define a piecewise-polyno-

mial q(x, tn+1) so that

qnþ1
i :¼ qðni; t

nþ1Þ ¼ unþ1ðniÞ þ Oðh
sÞ

for some points ni 2 Ei (see Section 3.3), and then we have the pointwise estimate

sup
i

unþ1ðniÞ � qnþ1
i

�� �� ¼ OðhsÞ: ð3:4Þ
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Note that q(x, tn+1) is not needed during the time stepping process, so this reconstruction can be omitted or computed only at
time steps when it is otherwise needed.

3.1. Liner reconstruction for integration

In order to be precise, we provide a sixth order WENO reconstruction, giving a fifth order scheme, i.e., s = 5 in (3.2) above.
Other order WENO reconstructions could be derived accordingly, see, e.g., [22].

For each cell Ei = [xi�1/2,xi+1/2], we begin by constructing three polynomials, each of degree two, Pi�1(x), Pi(x), and Pi+1(x).
These are defined, for k = i � 1, i, i + 1, by posing the interpolation requirements

1
h

Z
Ej

PkðxÞdx ¼ �un
j ; j ¼ k� 1; k; kþ 1; ð3:5Þ

where �un
j are the known cell-average values. To be precise, let

L�1ðxÞ :¼ 1
2

x
h
� 1

2

� �2

� 1
3

" #
; L0ðxÞ :¼ 13

12
� x

h

	 
2

and then

PkðxÞ :¼
X1

j¼�1

�un
kþjLjðx� xkÞ; k ¼ i� 1; i; iþ 1: ð3:6Þ

The full reconstruction is a convex combination of these three polynomials.
For our new method, we need to integrate a reconstructed polynomial over a typical trace-back set �En

j ¼ �xn
j�1=2; �x

n
jþ1=2

h i
.

Therefore, we need to decompose �En
j into the grid cells Ei = [xi�1/2,xi+1/2]. This leads us to decompose �En

j into a union of the
following four types of subintervals, where we write xc = ch for any c 2 R:

1. [xi�1/2,xi+1/2], when the whole Ei is contained in �En
j ;

2. [xi�1/2,xi�1/2+a], 0 < a < 1, when �xn
jþ1=2 intersects Ei but not �xn

j�1=2;
3. [xi�1/2+b,xi+1/2], 0 < b < 1, when �xn

j�1=2 intersects Ei but not �xn
jþ1=2;

4. [xi�1/2+b,xi�1/2+a], 0 < b < a < 1, when �En
j is contained in Ei.

Our goal is to find the corresponding linear weights for each subinterval of �En
j so that the higher order accuracy of the cell-

average (3.2) is maintained.
We begin with a Type 2 subinterval [xi�1/2,xi�1/2+a]. We will find the linear weight functions Ci

kðaÞ; k ¼ i� 1; i; iþ 1, so
that Z xi�1=2þa

xi�1=2

P0;a
i ðxÞdx ¼

Z xi�1=2þa

xi�1=2

uðx; tnÞdxþOðh6Þ; ð3:7Þ

where P0;a
i is a second degree polynomial defined by

P0;a
i ðxÞ :¼

Xiþ1

k¼i�1

Ci
kðaÞPkðxÞ ¼

Xiþ1

k¼i�1

Ci
kðaÞ

X1

j¼�1

�un
kþjLjðx� xkÞ ¼

Xiþ2

‘¼i�2

Xminði;‘Þþ1

k¼maxði;‘Þ�1

Ci
kðaÞL‘�kðx� xkÞ

0@ 1A�un
‘ : ð3:8Þ

To determine the Ci
kðaÞ, we need an auxiliary construction. Let U5(x) be the polynomial of degree five so that

U5ðxiþkþ1=2Þ ¼
Z xiþkþ1=2

x
i�5

2

uðx; tnÞdx; k ¼ �3;�2;�1;0;1;2:

That is, with the standard Lagrange basis, scaled by h,

LjðxÞ :¼ h
Y

k¼�3
k–j2

x� kþ 1
2

� �
h

ðj� kÞh ; j ¼ �3;�2;�1; 0;1;2;

we have

U5ðxÞ ¼
X2

j¼�2

Ljðx� xiÞ
Xiþj

‘¼i�2

�un
‘ ¼

Xiþ2

‘¼i�2

X2

j¼‘�i

Ljðx� xiÞ
 !

�un
‘ : ð3:9Þ

Since U5(x) interpolates six points of the integral of u, i.e., sums of the five cell-average values f�ui�2; �ui�1; �ui; �uiþ1; �uiþ2g times h,
we note that
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U5ðxi�1=2þaÞ � U5ðxi�1=2Þ ¼
Z xi�1=2þa

xi�1=2

uðx; tnÞdxþOðh6Þ ¼
Xiþ2

‘¼i�2

X2

j¼‘�i

Lj a� 1
2

� �
h

� �
� Lj �

1
2

h
� � � !

�un
‘ : ð3:10Þ

It remains only to match the coefficients of �un
‘ above with those from the integral of (3.8) over [xi�1/2,xi�1/2+a] to determine

the Ci
kðaÞ. Although tedious to calculate, the five equations are consistent, and the resulting three coefficients are

Ci
i�1ðaÞ :¼ ð2� aÞð3� aÞ

20
; Ci

iðaÞ :¼ ð2þ aÞð3� aÞ
10

; Ci
iþ1ðaÞ :¼ ð1þ aÞð2þ aÞ

20
: ð3:11Þ

For a Type 1 subinterval [xi�1/2,xi+1/2], any constant convex combination of linear weights that sum to one will work, since
for P0;1

i ðxÞ ¼
Piþ1

k¼i�1Ci
kð1ÞPkðxÞ,Z xiþ1=2

xi�1=2

P0;1
i ðxÞdx ¼ h�un

i ¼
Z xiþ1=2

xi�1=2

uðx; tnÞdx ð3:12Þ

by the definition of Pi(x) (3.5). We shall choose

Ci
i�1ð1Þ;C

i
ið1Þ;C

i
iþ1ð1Þ

n o
:¼ f1=10;3=5;3=10g;

which is consistent with Type 2 intervals, i.e., formulas (3.8) and (3.11) with a = 1.
For a Type 3 subinterval [xi�1/2+b,xi+1/2], by symmetry, we again use the same formulas (3.8) and (3.11) to define

Pb;1
i ðxÞ :¼ P0;b

i ðxÞ ¼
Xiþ1

k¼i�1

Ci
kðbÞPkðxÞ: ð3:13Þ

Then we have, by (3.7) and (3.12),Z xiþ1=2

xi�1=2þb

Pb;1
i ðxÞdx ¼

Z xiþ1=2

xi�1=2

P0;b
i ðxÞdx�

Z xi�1=2þb

xi�1=2

P0;b
i ðxÞdx ¼

Z xiþ1=2

xi�1=2

uðx; tnÞdx�
Z xi�1=2þb

xi�1=2

uðx; tnÞdxþOðh6Þ

¼
Z xiþ1=2

xxi�1=2þb

uðx; tnÞdxþOðh6Þ: ð3:14Þ

Note that for a = b = 1/2 in Types 2 and 3, our linear weight functions give the same set of constant linear weights {3/16,5/
8,3/16} as in CWENO [16,20].

We finally turn to a Type 4 subinterval [xi�1/2+b,xi�1/2+a]. Intuitively, one might wish to find similar linear weight functions
Ci

kðb;aÞ, k = i � 1, i, i + 1. But in fact, for arbitrary (b,a) it is not always possible do so, since Ci
i�1ðb;aÞ or Ci

iþ1ðb;aÞ could be sin-
gular for certain values of b and a. Fig. 3.1 gives the plot of Ci

i�1ðb;aÞ and Ci
iþ1ðb;aÞwhere these are singular. From the plot it is

easy to see that for any given b > 0 there is an a1(b) so that Ci
i�1ðb;a1Þ ¼ 1. Similarly there is an a2(b) giving Ci

iþ1ðb;a2Þ ¼ 1.
In fact, Fig. 3.2 gives the feasible region of (a,b) so that 0 < Ci

kðb;aÞ < 1, k = i � 1, i, i + 1. One can read the plot as follows.
Given a starting subinterval end point defined by b, the x-cross section is the feasible interval. For example, if b = 0, then the
feasible interval is all of [0,1], so any a is allowed. However, if b = 0.5, the feasible interval for a is only about [0.65,1], and if
b = 0.2, then the feasible interval for a is a union of two subintervals, i.e., about [0.2,0.68] and [0.9,1].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

α

β

Fig. 3.1. The singularity plots for both Ci
i�1ðb;aÞ (top) and Ci

iþ1ðb;aÞ (bottom).
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The point is that for an arbitrary subinterval [xi�1/2+b,xi�1/2+a], we cannot find feasible linear weights to define Pb;a
i ðxÞ so that

integration over the subinterval is preserved to fifth order. We can do this, as shown above, only when one of the interval’s end
points is a grid point. We present below another way to define the second order polynomial Pb;a

i ðxÞ on [xi�1/2+b,xi�1/2+a] so that
the integration remains high-order approximated, i.e.,Z xi�1=2þa

xi�1=2þb

Pb;a
i ðxÞdx ¼

Z xi�1=2þa

xi�1=2þb

uðx; tnÞdxþOðh6Þ: ð3:15Þ

From (3.7), we haveZ xi�1=2þa

xi�1=2þb

uðx; tnÞdx ¼
Z xi�1=2þa

xi�1=2

uðx; tnÞdx�
Z xi�1=2þb

xi�1=2

uðx; tnÞdx ¼
Z xi�1=2þa

xi�1=2

P0;a
i ðxÞdx�

Z xi�1=2þb

xi�1=2

P0;b
i ðxÞdxþOðh6Þ

¼
Z xi�1=2þa

xi�1=2þb

P0;a
i ðxÞdxþ

Z xi�1=2þb

xi�1=2

ðP0;a
i ðxÞ � P0;b

i ðxÞÞdxþOðh6Þ; ð3:16Þ

where, again, P0;a
i ðxÞ and P0;b

i ðxÞ are defined in (3.8). Therefore, we define

Pb;a
i ðxÞ :¼ P0;a

i ðxÞ þ A � B; ð3:17Þ

where

A :¼ 1
ða� bÞh

Z xi�1=2þb

xi�1=2

P0;a
i ðxÞdx; ð3:18Þ

B :¼ 1
ða� bÞh

Z xi�1=2þb

xi�1=2

P0;b
i ðxÞdx: ð3:19Þ

Then we have (3.15) as desired. Moreover, our definition does not create extra computational costs, sinceZ xi�1=2þa

xi�1=2þb

Pb;a
i ðxÞdx ¼

Z xi�1=2þa

xi�1=2

P0;a
i ðxÞdx�

Z xi�1=2þb

xi�1=2

P0;b
i ðxÞdx: ð3:20Þ

To compute the left-hand side above, we only need to compute the middle term, since the last term would have been com-
puted when we handled the previous grid cell.

Although everything is defined implicitly above, to complete the construction, we define the full reconstruction piece-
wise-polynomial Pnðx; �unÞ on �En

j . First, let the left and right endpoints of Ej = [xj�1/2,xj+1/2] be traced back to

�En
j ¼ �xn

j�1=2; �x
n
jþ1=2

h i
, and identify the grid indices iL and iR, where

xiL�1=2 6 �xn
j�1=2 < xiLþ1=2 and xiR�1=2 < �xn

jþ1=2 6 xiRþ1=2:

Then define ak and bk so that 0 6 bk < ak 6 1 and

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

α

β

Fig. 3.2. The feasible region for 0 6 Ci
k417ðb;aÞ, k = i � 1, 1, i + 1, when b < a.
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�En
j ¼

[iR�iL

k¼0

½xiLþk�1=2þbk
; xiLþk�1=2þak

�: ð3:21Þ

Finally, Pnðx; �unÞ is defined as

Pnðx; �unÞ :¼
XiR�iL

k¼0

Pbk ;ak
iLþk ðxÞv½xiLþk�1=2þbk

;xiLþk�1=2þak
�ðxÞ; x 2 �En

j ; ð3:22Þ

where vS(x) is the characteristic function of S and the Pbk ;ak
i ðxÞ are defined for Types 1–3 subintervals (bk = 0 and/or ak = 1) by

(3.8), (3.11) and (3.13), and for Type 4 subintervals (0 < bk < ak < 1) by (3.17)–(3.19). Moreover, we haveZ
�En

j

Pnðx; �unÞdx ¼
Z

�En
j

uðx; tnÞdxþOðh6Þ: ð3:23Þ

We emphasize that our construction gives a piecewise-polynomial, so we may have more than one set of linear weights
and reconstruction polynomials in a single grid cell Ei. This is very different from the traditional WENO reconstruction.
However, it does not pose any difficulty or inconsistency, since we only want to find the correct approximation of the inte-
gral of the reconstruction over a particular subinterval, not the approximation of the reconstruction itself at points within
the grid cell. This is the key to the success of the scheme. Traditional WENO requires that one compute the left and right
fluxes from the reconstruction, and therefore consistency is required for all the reconstruction polynomials in a single grid
cell.

Lemma 3.1. The number of integration computations needed is only at most one plus the number of computational grid cells.

Proof. This result is due to two simple facts. Firstly, we note that there is no need to compute the integration of Pnðx; �unÞ on a
Type 1 subinterval Ei, since it is equal to h�ui. Secondly, integration of a Type 3 subinterval can be obtained byZ xiþ1=2

xi�1=2þb

Pb;1
i ðxÞdx ¼

Z xiþ1=2

xi�1=2

Pb;1
i ðxÞdx�

Z xi�1=2þb

xi�1=2

Pb;1
i ðxÞdx ¼ h�un

i �
Z xi�1=2þb

xi�1=2

P0;b
i ðxÞdx: ð3:24Þ

Thus, except the very first cell, the main computation has already been computed for the previous cell. Therefore, the scheme
is very efficient. h

Lemma 3.2. Mass is conserved locally by the linear reconstruction; that is,Z
Ei

Pnðx; �unÞdx ¼ h�un
i for all i:

Proof. Consider a grid cell Ei. Let

Ei \ �xn
j�1=2

n o
j
¼ fxi�1=2þak

gN
k¼0

be the set of trace-back grid points that intersect Ei, and the endpoints of Ei, where we order the set so that
0 = a0 < a1 < � � � < aN = 1. ThenZ

Ei

Pnðx; �unÞdx ¼
XN�1

k¼0

Z xi�1=2þakþ1

xi�1=2þak

Pak ;akþ1
i ðx; tnÞdx:

If N = 1, Ei is a Type 1 subinterval, and the result was noted earlier. Otherwise, (3.20) shows that the sum collapses for any
Type 4 subintervals that we may have, and (3.24) shows that the initial Type 2 and final Type 3 subintervals combine to give
the claim. h

3.2. WENO reconstruction for integration

The WENO reconstruction is achieved by first computing the usual smoothness indicator

ISi
k :¼

X2

l¼1

Z xiþ1=2

xi�1=2

h2l�1 @lPkðxÞ
@xl

 !2

dx; k ¼ i� 1; i; iþ 1:
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An explicit integration yields

ISi
i�1 ¼

13
12
ð�ui�2 � 2�ui�1 þ �uiÞ2 þ

1
4
ð�ui�2 � 4�ui�1 þ 3�uiÞ2; ð3:25Þ

ISi
i ¼

13
12
ð�ui�1 � 2�ui þ �uiþ1Þ2 þ

1
4
ð�ui�1 � �uiþ1Þ2; ð3:26Þ

ISi
iþ1 ¼

13
12
ð�ui � 2�uiþ1 þ �uiþ2Þ2 þ

1
4
ð3�ui � 4�uiþ1 þ �uiþ2Þ2: ð3:27Þ

The nonlinear weights xi
kðaÞ are

xi
kðaÞ :¼ ci

kðaÞ
ci

i�1ðaÞ þ ci
iðaÞ þ ci

iþ1ðaÞ
; k ¼ i� 1; i; iþ 1; ð3:28Þ

where

ci
kðaÞ :¼ Ci

kðaÞ

�þ ISi
k

	 
2 ; k ¼ i� 1; i; iþ 1 ð3:29Þ

and � > 0 is small, taken to be 10�6 in our numerical tests. Although we may have more than one set of WENO weights in a
single interval Ei, the smoothness indicator is uniquely defined, since it represents the smoothness of the input cell-average
values �uk.

Now for a Type 1 or 2 subinterval [xi�1/2,xi�1/2+a], we define the piecewise-polynomial reconstruction R0;a
i ðxÞ by

R0;a
i ðxÞ :¼

Xiþ1

k¼i�1

xi
kðaÞPkðxÞ: ð3:30Þ

We haveZ xi�1=2þa

xi�1=2

R0;a
i ðxÞdx ¼

Z xi�1=2þa

xi�1=2

uðx; tnÞdxþOðh6Þ; ð3:31Þ

becauseZ xi�1=2þa

xi�1=2

R0;a
i ðxÞ � P0;a

i ðxÞ
	 


dx ¼
Z xi�1=2þa

xi�1=2

Xiþ1

k¼i�1

xi
kðaÞ � Ci

kðaÞ
	 


PkðxÞdx

¼
Z xi�1=2þa

xi�1=2

Xiþ1

k¼i�1

xi
kðaÞ � Ci

kðaÞ
	 


ðPkðxÞ � uðx; tnÞÞdx ¼ Oðh6Þ ð3:32Þ

and, for k ¼ i� 1; i; iþ 1; xi
kðaÞ ¼ Ci

kðaÞ þ Oðh
2Þ and each Pk(x) is a parabolic reconstruction that is fourth order accurate in

the integration of u(x, tn) over our subinterval. Similarly, for a Type 3 subinterval [xi�1/2+b,xi+1/2], we define

Rb;1
i ðxÞ :¼

Xiþ1

k¼i�1

xi
kðbÞPkðxÞ ¼ R0;b

i ðxÞ ð3:33Þ

and note thatZ xiþ1=2

xi�1=2þb

Rb;1
i ðxÞdx ¼

Z xiþ1=2

xi�1=2þb

uðx; tnÞdxþOðh6Þ: ð3:34Þ

Finally, for a Type 4 subinterval [xi�1/2+b,xi�1/2+a], we define

Rb;a
i ðxÞ :¼ R0;a

i ðxÞ þ Aw � Bw; ð3:35Þ

Aw :¼ 1
ða� bÞh

Z xi�1=2þb

xi�1=2

R0;a
i ðxÞdx; ð3:36Þ

Bw :¼ 1
ða� bÞh

Z xi�1=2þb

xi�1=2

R0;b
i ðxÞdx ð3:37Þ

and thenZ i�1=2þa

i�1=2þb
Rb;a

i ðxÞdx ¼
Z i�1=2þa

i�1=2þb
uðx; tnÞdxþOðh6Þ: ð3:38Þ

This result could be obtained similarly as (3.16).
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Finally, we define Rnðx; �unÞ similar to Pnðx; �unÞ in (3.22). Using the decomposition (3.21) of �En
j , let

Rnðx; �unÞ :¼
XiR�iL

k¼0

Rbk ;ak
iLþk ðxÞv

xiLþk�1=2þbk
;xiLþk�1=2þak

h iðxÞ; x 2 �En
j : ð3:39Þ

In summary, for the scheme (3.1), we have obtained (3.2), and therefore (3.3), i.e., we have shown the local truncation error
estimate for smooth solutions. Moreover, by reasoning similar to the proof of Lemma 3.2, we see that mass is conserved lo-
cally. We have proved the following result.

Lemma 3.3. The local truncation error of the reconstruction is Oðh5Þ, so also for the method; that is, (3.3) holds with s = 5.
Moreover, mass is conserved locally by the reconstruction; that is,Z

Ei

Rnðx; �unÞdx ¼ h�un
i for all i:

3.3. Optional WENO postprocessing for pointwise values

Optionally, one may postprocess the cell-average values �unþ1
i to obtain a high order pointwise approximation q(x, tn+1) of

u(x, tn+1) at certain points using a standard WENO reconstruction, similar to that done above. For completeness, we briefly
review the process. However, the reader should realize that this step is optional, since higher order pointwise values do
not enter into the time stepping computation.

For a fixed time level, the standard WENO reconstruction starts with the cell average values �unþ1
i on Ei, and produces (in

our case) a fifth order accurate approximation of u(x, tn+1) at the predetermined points ni 2 Ei for all i. Normally ni = xi±1/2 for
WENO and ni = xi for CWENO.

For example, we will take ni = xi+1/2. We use Pk(x), k = i � 1, i, i + 1, defined in (3.6) and U5(x) constructed above in (3.9) with
�unþ1

i in place of �un
i . We find the linear weights Ci

k so thatXiþ1

k¼i�1

Ci
kPkðniÞ ¼ U05ðnÞ;

which in the case ni = xi+1/2 is Ci
i�1;C

i
i;C

i
iþ1

n o
¼ f1=10;3=5;3=10g. We then modify the weights using the nonlinear weight

procedure in Section 3.2 above. We achieve a fifth order accurate approximation q(x, tn+1) at each ni.

If we choose ni = xi instead, we would have the linear weights Ci
i�1;C

i
i;C

i
iþ1

n o
¼ f�9=80;49=40;�9=80g. Because some

weights are negative, a splitting technique [24] needs to be applied in this case.
Because the �unþ1

i are not exact cell-averages, it is not clear that our postprocessed reconstruction is Oðh5Þ, as claimed.
What we have shown from (3.1) and (3.2) is that, locally,Z

Ei

�unþ1
i � uðx; tnþ1Þ

� �
dx ¼ Oðh6Þ;

that is, h�unþ1
i is sixth order accurate. Let V5(x) be the polynomial analogous to U5(x) that is defined by (3.9) with exact cell

averages 1
h

R
Ei

uðx; tnþ1Þdx in place of �un
i . Therefore on Ei,

jU5ðxÞ � V5ðxÞj ¼
Xiþ2

‘¼i�2

X2

j¼‘�i

1
h
Ljðx� xiÞ

 !
h�un

‘ �
Z

E‘

uðx; tnþ1Þdx
� �

maintains Oðh6Þ accuracy, since

k ¼max
Ei

X2

j¼�2

1
h
Ljðx� xiÞ

���� ����
is bounded. This means that although we use perturbed data for our interpolation, we still maintain the desired order of
accuracy for U5, and also its derivative. This justifies the accuracy of our standard WENO postprocessing reconstruction.

4. The finite volume procedure in one space dimension

We define the full finite volume procedure in this section. In general, the trace-back points �xn
i can not be found analyt-

ically. We need to use some approximate ODE solver to solve (2.1). While any reasonable solver should work well, we chose
to use a fourth order Runge–Kutta method. Note that we can use micro-stepping to solve (2.1) over the time step [tn, tn+1] if �xn

i

are not accurate enough, since a(x, t) is independent of the solution. With the approximated trace-back points �Xn
iþ1=2, and

therefore the approximated trace-back regions eEn
i ¼ �Xn

i�1=2;
�Xn

iþ1=2

h i
, the WENO reconstruction procedure given in Section 3

can be computed.
Assume that the cell-averages U0

i

� �
i are obtained from the initial condition u0(x) and Un

i

� �
i have been derived up to time

level n. For each Ei = [xi�1/2,xi+1/2], we find the approximated trace-back set eEn
i ¼ �Xn

i�1=2;
�Xn

iþ1=2

h i
, and define Unþ1

i by
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Unþ1
i :¼ 1

h

Z
eEn

i

eRnðx; UnÞdx; ð4:1Þ

where eRnðx; UnÞ is the WENO piecewise-polynomial reconstructed from Un
i

� �
i for integration as described in Section 3, but

using the approximated trace-back sets eEn
i . After Unþ1

i is obtained, we may apply the WENO postprocessing reconstruction for
pointwise values, if desired. This completes our scheme.

Note that the only additional error is from approximating the trace-back regions. An algorithm as in [2] should be used to
adjust the approximate trace-back set volume. Also, an analogue of the argument in [9] and/or [3] should provide a rigorous
error analysis for the overall scheme.

Theorem 4.1. The method has formal Oðh5Þ accuracy, and it is locally mass conservative.

Proof. The accuracy follows directly from the truncation error part of Lemma 3.3 (which continues to hold for eRn in place of
Rn, assuming a sufficiently accurate characteristic tracing). The local mass conservation follows in a Lagrangian setting
directly from the mass conservation part of Lemma 3.3, since the reconstruction is locally conservative and all mass is
accounted for within the approximate space–time regions eEnþ1

i (see (2.4)).
We can also demonstrate the conservation in an Eulerian setting as follows, again using Lemma 3.3. The scheme is

hUnþ1
i ¼

Z
eEn

i

eRnðx; UnÞdx ¼
Z

Ei

eRnðx; UnÞdxþ
Z
eEn

i

eRnðx; UnÞdx�
Z

Ei

eRnðx; UnÞdx

¼ hUn
i þ

Z �Xn
iþ1=2

�Xn
i�1=2

eRnðx; UnÞdx�
Z xiþ1=2

xi�1=2

eRnðx; UnÞdx ¼ hUn
i þ

Z xi�1=2

�Xn
i�1=2

eRnðx; UnÞdx�
Z xiþ1=2

�Xn
iþ1=2

eRnðx; UnÞdx; ð4:2Þ

which is in conservative form. h

5. A method for two-dimensional problems

In this section, we extend the one-dimensional method to multiple dimensions. For simplicity, we extend only to two-
dimensions, since three and higher higher dimensional cases follow easily from the two-dimensional case. That is, we
approximate the unknown function u(x,y, t) satisfying the equation

@u
@t
þ @ða1uÞ

@x
þ @ða2uÞ

@y
¼ 0; ðx; yÞ 2 R2; t > 0; ð5:1Þ

uðx; y;0Þ ¼ u0ðx; yÞ; ðx; yÞ 2 R2; ð5:2Þ

where a1(x,y, t), a2(x,y, t), and u0(x,y) are given. We use a Strang splitting technique [7,25] in space to decouple the problem
into two one dimensional problems.

For a first order in time splitting, over the time interval [tn, tn+1], we approximate in two steps. First, for each fixed y 2 R,
from the current value of the approximate solution un(x,y) as the initial condition at time tn, we approximate the x-sweep

@u
@t
þ @ða1uÞ

@x
¼ 0; uðx; y; tnÞ ¼ unðx; yÞ; x 2 R; t 2 ðtn; tnþ1� ð5:3Þ

for ~unþ1ðx; yÞ. Second, for each fixed x 2 R, from ~unþ1ðx; yÞ as initial condition at time tn, we approximate the y-sweep

@u
@t
þ @ða2uÞ

@y
¼ 0; uðx; y; tnÞ ¼ ~unþ1ðx; yÞ; y 2 R; t 2 ðtn; tnþ1�: ð5:4Þ

The result is the final approximation un+1(x,y).
A second order Strang splitting requires three steps. First, one solves the x sweep (5.3) only over the time interval (tn, tn+1/2],

where tn+1/2:¼tn + Dt/2, for ~unþ1=2ðx; yÞ. The second step is the same as the y-sweep (5.4) above, but starting from the initial
condition ~unþ1=2ðx; yÞ and resulting in ~~unþ1ðx; yÞ. The third step is to solve the rest of the x-sweep (5.3) over the time interval
(tn+1/2, tn+1], starting from the initial condition ~~unþ1ðx; yÞ, for the final solution un+1(x,y).

Thus, we need only provide a way to solve the one-dimensional x- and y-sweep problems (5.3) and (5.4), each of which
are the same as (1.1), and also to limit the number of y points required for the x-sweep(s) and x points required for the y-
sweep. We describe only the approximation of the x-sweep, since the y sweep is then defined by symmetry. Moreover, we
define only the full x-sweep, since the half sweep needed for the second order splitting is then clear.

5.1. The two-dimensional scheme

The x-grid has been defined in Section 2, and for simplicity, we define the y-grid similarly using the same h > 0 and the
y-grid cells or elements
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Fj :¼ ½yj�1=2; yjþ1=2�:

As with any finite volume scheme, we approximate the average of u,

�un
i;j :¼ 1

h2

Z
Fj

Z
Ei

uðx; y; tnÞdxdy

by Un
i;j, defined below.

For any fixed y, the final value problem

dz
dt
¼ a1ðz; y; tÞ; zðtnþ1; x; yÞ ¼ x ð5:5Þ

can be used to define the exact trace-back point of x to time tn as �xnðx; yÞ :¼ zðtn; x; yÞ. The trace-back set corresponding to Ei

at time level tn is then

�En
i ðyÞ :¼ ½�xnðxi�1=2; yÞ:�xnðxiþ1=2; yÞ�: ð5:6Þ

Similarly, we can approximate the solution to (5.5) as ~z and define the approximate trace-back points �Xnðx; yÞ :¼ ~zðtn; x; yÞ and
the approximate trace-back seteEn

i ðyÞ :¼ ½�Xnðxi�1=2; yÞ; �Xnðxiþ1=2; yÞ� ð5:7Þ

possibly adjusted for volume conservation as described in [2] and as noted above in Section 4.
Analogous to (2.4), we have thatZ

Ei

unþ1ðx; yÞdx�
Z

�En
i
ðyÞ

unðx; yÞdx ¼ 0: ð5:8Þ

This equation suggests that we would like to define approximate cell averages by

Unþ1
i;j �

1

h2

Z
Fj

Z
eEn

i
ðyÞ

unðx; yÞdxdy:

Three problems arise. First, we cannot compute the integral involving every y, so we will use a quadrature formula. Second,
in place of un we need to use a reconstruction of the approximate solution at time tn, and we will use one similar to that
presented above for the one-dimensional case. Third, our reconstruction must be made from the two-dimensional cell aver-
ages. To maintain high order accuracy, we will need to include a second, y-reconstruction technique in the method.

Since we aim for Oðh5Þ accuracy, we use a three point Gauss rule to approximate the integral in y over Fj. Let the Gauss
points and corresponding weights be yj

k 2 Fj and wj
k; k ¼ �1;0;1. Analogous to (4.1), we can state the x-sweep as

Unþ1
i;j :¼ 1

h2

X
k

wj
k

Z
eEn

i
yj

kð Þ
eRn;j x; yj

k; Un
	 


dx; ð5:9Þ

where it remains to define the reconstruction eRn;j x; yj
k; Un

	 

.

If desired, at any time level, a pointwise WENO postprocessing reconstruction can be applied to obtain higher order point-
wise values. This is done below in Section 7 to define a discrete maximum norm.

5.2. The two-dimensional reconstruction for integration

We begin with a reconstruction targeting high order pointwise approximation. Fix a y-grid cell Fj and a Gauss point yj
k. Let

Rj
kðy; �vÞ be a one-dimensional, piecewise-polynomial, WENO reconstruction in the y-direction of the values f�v ‘g‘ which is
Oðh5Þ accurate at the Gauss point yj

k.
To be specific, on the interval Fj = [yj�1/2,yj+1/2], let yj

�1 ¼ yj � h
ffiffiffiffiffiffiffiffi
3=5

p
and yj

0 ¼ yj be the three Gaussian quadrature points.
The linear reconstruction is given basically in (3.5) and (3.6) as

Rj
linear;kðy; �vÞ ¼

Xjþ1

‘¼j�1

r‘�j

X1

m¼�1

�v ‘þmLmðy� y‘Þ; ð5:10Þ

wherein the linear weights r‘�j for yj
�1 are

r�1 ¼
	9þ 22

ffiffiffiffiffiffi
15
p

40ð�2þ 3
ffiffiffiffiffiffi
15
p
Þ
; r0 ¼ 1� r�1 � r1; and r1 ¼

�9þ 22
ffiffiffiffiffiffi
15
p

40ð	2þ 3
ffiffiffiffiffiffi
15
p
Þ

and for yj
0; r�1 ¼ �9=80 and r0 = 98/80. The weights for yj

�1 are all between 0 and 1, and so a nonlinear WENO modification
can be applied to define Rj

kðy; �vÞ. The weights for yj
0 includes negative values, but [24] explains how to treat such negative

weights in a WENO reconstruction. However, we do not use Rj
0ðy; �vÞ.

For each fixed x-index i, we reconstruct in y as follows. For each Gauss point index k = ±1, we set
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Vn;j;�1
i :¼ Rj

�1 yj
�1; Un

i;ð�Þ

	 

: ð5:11Þ

We will show later in (5.17) that these are Oðh5Þ approximations of the average mass in the interval Ei, for the given point
y ¼ yj

k. For index k = 0, however, we use the definition

Vn;j;0
i ¼ 1

wj
0

hUn
i;j �wj

�1Vn;j;�1
i �wj

1Vn;j;1
i

h i
; ð5:12Þ

so that mass is conserved locally under the Gauss quadrature rule; that is,X
k

wj
kVn;j;k

i ¼ Un
i;jh: ð5:13Þ

We now complete the description of the x-sweep (5.9) by defining

eRn;j x; yj
k; Un

	 

:¼ eRnðx; Vn;j;kÞ; ð5:14Þ

where the one-dimensional reconstruction for integration eRn is the one used in (4.1).
We remark that one could use (5.11) to define Vn;j;0

i in place of (5.12). As one can see from the next subsection, formal
Oðh5Þ accuracy would be obtained, but the mass balance would only beOðh5Þ accurate. Moreover, if the linear reconstruction
Rj

linear;kðy; �vÞ in (5.10) were to be used, then the use of (5.11) to define Vn;j;0
i would result in both formal Oðh5Þ accuracy and

mass conservation. However, the scheme presented here is designed to both reduce oscillation and maintain mass conser-
vation. It is also relatively efficient, as the following lemma records.

Lemma 5.1. For a full x-sweep on an m � n grid, the main computations needed are (1) 2mn full WENO reconstructions in y given
by (5.11) and mn simple reconstructions in y given by (5.12), (2) using these values as in (5.14), 3n solutions of the one-
dimensional method on a grid with m elements, and finally (3) n compilation of one-dimensional results in (5.9).

5.3. Formal accuracy

We have the following result.

Theorem 5.2. The two-dimensional EL–WENO finite volume scheme (5.9) is formally Oðh5Þ accurate in space. Moreover, it is
locally mass conservative.

Proof. In light of (5.8), we note that

h2�unþ1
i;j :¼

Z
Fj

Z
Ei

unþ1ðx; yÞdxdy ¼
Z

Fj

Z
�En

i
ðyÞ

unðx; yÞdxdy: ð5:15Þ

We claim thatZ
Fj

Z
�En

i
ðyÞ

unðx; yÞdxdy ¼
X

k

wj
k

Z
eEn

i
yj

kð Þ
eRn;j x; yj

k; �un
	 


dxþOðh7Þ; ð5:16Þ

which will prove the local truncation error or formal accuracy of our scheme (5.9) is Oðh5Þ. The quadrature and approximate
trace-back error (assuming sufficiently accurate characteristic tracing) is simple to account for:Z

Fj

Z
�En

i
ðyÞ

unðx; yÞdxdy ¼
X

k

wj
k

Z
eEn

i
yj

kð Þ
un x; yj

k

	 

dxþOðh7Þ:

Consider next the reconstruction in y. For each index j, let

�vn
j ðxÞ :¼ 1

h

Z
Fj

unðx; yÞdy

be the average mass in Fj for the given value of x. Our one-dimensional reconstruction Rj
kðy; �vnðxÞÞ is accurate in y for such

average values at the Gauss point yj
k, i.e.,

Rj
k yj

k; �vnðxÞ
	 


¼ un x; yj
k

	 

þOðh5Þ:

However, by definition (see (5.10)), the reconstruction operator does not depend explicitly on x, and it is linear in the �vnðxÞ,
so in fact

1
h

Z
Ei

Rj
k yj

k; �vnðxÞ
	 


dx ¼ Rj
k yj

k;
1
h

Z
Ei

�vnðxÞdx

 !
¼ Rj

k yj
k; �un

i;ð�Þ

	 

;
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since

1
h

Z
Ei

�vn
j ðxÞdx ¼ �un

i;j ¼
1

h2

Z
Fj

Z
Ei

uðx; y; tnÞdxdy:

Therefore, the y reconstruction accurately approximates the x-grid cell averages, i.e.,

Rj
k yj

k; �un
i;ð�Þ

	 

¼ ~vn yj

k

	 

þOðh5Þ; ð5:17Þ

where we define

~vn
i ðyÞ :¼ 1

h

Z
Ei

unðx; yÞdx:

So, if vn;j;k
i is defined from (5.11) and (5.12) using �un

i;ð�Þ in place of Un
i;ð�Þ, then

~vn
i yj

k

	 

¼ vn;j;k

i þOðh5Þ; k ¼ �1:

We need to treat the case k = 0 specially. We compute

vn;j;0
i � ~vn

i y0
k

� �
¼ 1

wj
0

hUn
i;j �wj

�1v
n;j;�1
i �wj

1v
n;j;1
i �wj

0
~vn

i y0
k

� �h i
¼ 1

wj
0

hUn
i;j �

X
k

wj
k
~vn

i yk
k

� �" #
þOðh5Þ

¼ 1

wj
0

hUn
i;j �

Z
Fj

~vn
i ðyÞdy

" #
þOðh5Þ ¼ Oðh5Þ

using that the Gauss weights are OðhÞ and noting that the last quantity in brackets above vanishes identically. Thus, for all k,

~vn
i yj

k

	 

¼ vn;j;k

i þOðh5Þ:

Finally, the one-dimensional reconstruction for integration in x, eRn, was seen earlier to be formally accurate for each fixed
y, so we have at the Gauss points thatZ

eEn
i

yj
kð Þ

unðx; yj
kÞdx ¼

Z
eEn

i
yj

kð Þ
eRnðx; ~vn yj

k

	 

ÞdxþOðh6Þ ¼

Z
eEn

i
yj

kð Þ
eRnðx; vn;j;kÞdxþOðh6Þ ¼

Z
eEn

i
yj

kð Þ
eRn;jðx; yj

k; �unÞdxþOðh6Þ

using (5.14) in the last equality. Since the Gauss weights are OðhÞ, the claim (5.16), and therefore the Oðh5Þ formal accuracy
of the method, follows.

The proof of the local mass conservation is based on three facts. First, during the x-sweep, no mass crosses the y-faces;
that is, mass is constrained locally to the strip R� Fj for each j. Second, all mass is accounted for in the quadrature rule over Fj

by the Vn;j;k
i , as we saw in (5.13). Finally, each one-dimensional transport in the x-direction is locally mass conservative by

Theorem 4.1. We can also express the scheme (5.9) conservatively in an Eulerian setting. Using (5.14) and (5.13), we have

h2Unþ1
i;j ¼

X
k

wj
k

Z
eEn

i
yj

kð Þ
eRnðx; Vn;j;kÞdx ¼ h2Un

i;j þ
X

k

wj
k

Z
eEn

i
yj

kð Þ
eRnðx; Vn;j;kÞdx� h

X
k

wj
kVn;j;k

i :

Now Lemma 3.3 (for the approximate characteristics, i.e., eRn in place of Rn) shows that for k = �1,0,1,Z
Ei

eRnðx; Vn;j;kÞdx ¼ hVn;j;k
i

and thus

h2Unþ1
i;j ¼ h2Un

i;j þ
X

k

wj
k

Z
eEn

i
yj

kð Þ
eRnðx; Vn;j;kÞdx�

Z
Ei

eRnðx; Vn;j;kÞdx

( )

¼ h2Un
i;j þ

X
k

wj
k

Z xi�1=2

�Xn
i�1=2

yj
kð Þ
eRnðx; Vn;j;kÞdx�

Z xiþ1=2

�Xn
iþ1=2

yj
kð Þ
eRnðx; Vn;j;kÞdx

( )
: ð5:18Þ

The proof is complete. h

6. Some numerical results in one space dimension

All the examples herein use a periodic boundary condition. In all our one-dimensional results, m is the number of grid
cells used. Corresponding to the estimate (3.3), we report errors measured in the discrete L1

h norm
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kun � �unk1;h :¼
X

i

1
h

Z
Ei

uðx; tnÞdx� �un
i

���� ����h; ð6:1Þ

and, corresponding to (3.4), errors measured in the discrete L1h norm

kun � qnk1;h :¼ sup
i

un
i � qn

i

�� �� ð6:2Þ

using the points ni = xi.

6.1. Example 1

We first test our scheme in the simple case of a(x, t) = 1/3, with initial condition u0(x) = 0.75 + 0.25 sin (px) over [0,2]. The
exact solution is u(x, t) = u0(x � t/3). We present two tests. First, we use a time step Dt = 40h, which is about 13.3 times the
CFL time limit, i.e., CFLDt = maxjajDt/h = 13.3. The final time is at T = 10. The L1

h and L1h errors as defined in (6.1) and (6.2) are
reported in Table 6.1, where m is the number of grid cells. A fifth order convergence is observed, as expected from Theorem
4.1.

For the second test, we choose Dt so that grid points trace back to grid points, i.e., Dt is a multiple of 3h. The L1
h error is

within round off error for all m, and a superconvergence of the sixth order in the L1h error is obtained. This seems reasonable,
since the error in (3.2) remains zero for all iterations if there is no initial error and the trace-back regions are exact for all
times. The test with D t = 45h and the final time at T = 9, using long double precision, is given in Table 6.2.

6.2. Example 2

We test our scheme on a case with a(x, t) = sin (x) over [0,2p], with exact solution

uðx; tÞ ¼ sin 2 arctanðe�t tanðx=2ÞÞð Þ
sinðxÞ :

Note that Type 4 subintervals occur in this example. We report the L1
h and L1h errors in Table 6.3. The initial time is at 0.1 and

the final time is at T = 1. We use 10 steps, so Dt = 0.09. A fifth order convergence is observed.
In Table 6.4, we report the errors using only 5 time steps. In fact, we can use only one time step, and the results are given

in Table 6.5. It can be seen that the errors are slightly reduced when the number of time steps is reduced, since less numerical
diffusion builds up. However, the order of convergence remains basically the same fifth order, since it reflects the spatial
convergence order.

In the above tests, we used a fixed point iteration to find the exact trace-back points. In the final test, we use an approx-
imate Runge–Kutta solver for (2.1), and within each time step defined by (4.1), we use m/10 micro-time steps for the Runge–
Kutta solver. The results are reported in Table 6.6. Comparing Tables 6.3 and 6.6, we see that the Runge–Kutta solver is in fact
providing a good approximation to the trace-back points.

Table 6.1
Example 1. Error and convergence order at T = 10 with Dt = 40h.

m L1
h error Order L1h error Order

20 3.40206E�05 – 2.91819E�05 –
40 7.90078E�07 5.42827 7.35534E�07 5.31014
80 2.34044E�08 5.07714 2.39566E�08 4.94030

160 7.07622E�10 5.04766 7.57568E�10 4.98290
320 2.18519E�11 5.01715 2.21733E�11 5.09448
640 6.88475E�13 4.98821 6.08624E�13 5.18713

Table 6.2
Example 1. Error and convergence order at T = 9 with Dt = 45h.

m L1
h error L1h error Order

20 3.28371E�33 3.20158E�06 –
40 1.10645E�32 7.22244E�08 5.47016
80 1.50295E�32 1.31427E�09 5.78015

160 2.36420E�32 2.19594E�11 5.90328
320 4.98864E�32 3.49684E�13 5.97264
640 8.96463E�32 5.35670E�15 6.02857
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6.3. Example 3

In this example, we test a case with a(x, t) = sin (t) on [0,2], for which the exact solution is u(x, t) = u0(x + 1 + cos(t)), where
u0(x) is chosen as in Example 1. We use a fourth order Runge–Kutta method to approximate the trace-back points for system
(2.1). We take the time step Dt = h4/5, and a fifth order convergence is obtained at the final time T = 4, see Table 6.7.

We also used m micro-time steps in the Runge–Kutta method within each time step defined by (4.1). The results are re-
ported in Table 6.8. Finally, since the exact trace-back point could be found analytically, we test it with 5 time steps and
report the results in Table 6.9. We seem to obtain a sixth order superconvergence for both of these tests, but it is not clear
why, since the grid points are not traced back to grid points.

6.4. Example 4

In the final example, we take a standard test case, called Shu’s linear test [14]. In this case, a(x, t) = 1 and the initial data
u0(x) is defined as

Table 6.3
Example 2. Error and convergence order at T = 1 with 10 steps.

m L1
h error Order L1h error Order

20 1.11043E�02 – 8.65266E�03 –
40 4.47664E�04 4.63256 5.66291E�04 3.93353
80 1.31403E�05 5.09035 1.81398E�05 4.96431

160 2.78878E�07 5.55822 5.36271E�07 5.08005
320 5.56687E�09 5.64663 1.25553E�08 5.41659
640 1.24537E�10 5.48221 3.25145E�10 5.27107

Table 6.4
Example 2. Errors and convergence order at T = 1 with 5 steps.

m L1
h error Order L1h error Order

20 8.74024E�03 – 6.89093E�03 –
40 2.32960E�04 5.22952 4.15458E�04 4.05192
80 7.34720E�06 4.98674 1.43913E�05 4.85143

160 1.55773E�07 5.55968 3.72114E�07 5.27331
320 3.42601E�09 5.50678 9.70153E�09 5.26139
640 1.09435E�10 4.96838 3.00589E�10 5.01235

Table 6.5
Example 2. Errors and convergence order at T = 1 with one step.

m L1
h error Order L1h error Order

20 2.81444E�03 – 3.01100E�03 –
40 1.98279E�04 3.82724 1.92974E�04 3.96377
80 6.04810E�06 5.03491 8.59603E�06 4.48859

160 1.29589E�07 5.54447 2.18847E�07 5.29568
320 2.33589E�09 5.79383 4.19884E�09 5.70378
640 3.92587E�11 5.89481 7.51634E�11 5.80382

Table 6.6
Example 2. Error and convergence order at T = 1 with 10 steps and m/10 micro-time steps for
the trace-back Runge–Kutta solver.

m L1
h error Order L1h error Order

20 1.11044E�02 – 8.65267E�03 –
40 4.47667E�04 4.63256 5.66291E�04 3.93353
80 1.31403E�05 5.09036 1.81398E�05 4.96431

160 2.78878E�07 5.55822 5.36263E�07 5.08007
320 5.56624E�09 5.64679 1.25548E�08 5.41663
640 1.16465E�10 5.57873 3.25641E�10 5.26882
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u0ðxÞ ¼

1
6 ðGðx;b; z� dÞ þ Gðx;b; zþ dÞ þ 4Gðx;b; zÞÞ; 0:2 6 x 6 0:4;
1; 0:6 6 x 6 0:8;
1� j10ðx� 1:1Þj; 1 6 x 6 1:2;
1
6 Fðx;a; a� dÞ þ Fðx;a; aþ dÞ þ 4Fðx;a; aÞð Þ; 1:4 6 x 6 1:6;
0; otherwise;

8>>>>>><>>>>>>:

Table 6.7
Example 3. Errors and convergence order at T = 4 with Dt = h4/5, using RK4 for the trace-back
points.

m L1
h error Order L1h error Order

20 5.61267E�04 – 4.86282E�04 –
40 1.94068E�05 4.85405 1.87017E�05 4.70055
80 6.51947E�07 4.89567 6.49074E�07 4.84865

160 2.14898E�08 4.92303 2.09586E�08 4.95277
320 6.98781E�10 4.94266 6.64485E�10 4.97916
640 2.24770E�11 4.95832 2.03981E�11 5.02573

Table 6.8
Example 3. Errors and convergence order at T = 4, with 5 steps, m micro-time RK4 steps.

m L1
h error Order L1h error Order

20 3.96103E�05 – 3.30529E�05 –
40 4.95198E�07 6.32172 4.54642E�07 6.18390
80 8.20460E�09 5.91543 7.91174E�09 5.84459

160 1.33948E�10 5.93669 1.22479E�10 6.01339
320 2.18257E�12 5.93949 1.83076E�12 6.06395
640 1.45575E�13 3.90620 1.69054E�12 0.11496

Table 6.9
Example 3. Errors and convergence order at T = 4, with 5 steps and exact trace-back points.

m L1
h error Order L1h error Order

20 3.96105E�05 – 3.30536E�05 –
40 4.95196E�07 6.32174 4.54625E�07 6.18399
80 8.20452E�09 5.91544 7.91116E�09 5.84464

160 1.33942E�10 5.93674 1.22519E�10 6.01281
320 2.19103E�12 5.93385 1.81899E�12 6.07372
640 1.40254E�13 3.96549 2.10054E�13 3.11430
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0
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0.6

0.8

1

Fig. 6.1. Example 4. Shu’s linear test with m = 160. The blue curve shows the exact solution, while the solid black squares are the exact solution at the center
of each cell. The red circles are the computed solution plotted at the center of each cell. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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where

Gðx;b; zÞ ¼ e�bðx�zÞ2 and Fðx;a; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� a2ðx� aÞ2;0Þ

q
:

The constants are set to a = 0.5, z = �0.7, d = 0.005, a = 10, and b = log2/(36d2).
We compute the solution up to time T = 2 with m = 160 grid cells. The resulting solution is shown in Fig. 6.1. The blue

curve stands for the exact solution, the solid black squares are the exact solution at the center of each cell. The red circles

Table 7.1
Example 5 with true solution u(x, y, t) = sin(px + py � 2pt). Errors and convergence order at
t = 20, for Dt = 2.5h (CFLDt = 2.5).

m L1
h error Order L1h error Order

20 1.28182E�02 – 4.99453E�03 –
40 4.16771E�04 4.94280 1.85201E�04 4.75319
80 1.30725E�05 4.99465 6.15524E�06 4.91113

160 4.08569E�07 4.99981 1.91862E�07 5.00367
320 1.27688E�08 4.99989 5.88077E�09 5.02792
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Fig. 7.1. Example 5 with an initial cross pattern. Plot of cell average values at t = 0 and t = 0.5, using Dt = 10h. The time step allows perfect reproduction of
the cross pattern on the grid.
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Fig. 7.2. Example 5 with an initial cross pattern. Plot of cell average values at t = 0.5 using Dt = 10.5h. The time step does not allows reproduction of the
cross pattern on the grid.
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are the computed solution at the center of each cell. It is easy to see that the numerical solution maintains the same reso-
lution as the initial condition, since all the trace-back points are exact and at grid points. The results shown use Dt = 2/10, i.e.,
10 steps, but in fact, we could use one step, Dt = 2. No numerical diffusion builds up. We could run the test with a larger final
time, and the results would remain the same as long as the final time was a multiple of 2.

Table 7.2
Example 6. Errors, convergence order, and mass error at t = 2p, using Dt = 2h (CFLDt = 2).

m L1
h error Order L1h error Order Mass error

20 9.17146E�04 – 1.00826E�03 – 2.80779E�15
40 9.79220E�05 3.22745 1.48453E�04 2.76379 1.28105E�14
80 4.83232E�06 4.34084 9.68675E�06 3.93785 4.61530E�14

160 1.23696E�07 5.28785 2.87469E�07 5.07454 1.05292E�13
320 3.85239E�09 5.00490 5.89530E�09 5.60769 4.89608E�14
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Fig. 7.3. Example 7. Initial condition, shown using (a) cell average values and (b) a graphically smoothed contour plot.
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Fig. 7.4. Example 7. Solution at t = 12p, using Dt = 4h ( CFLDt = 4), shown using (a) cell average values and (b) a graphically smoothed contour plot.
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7. Some numerical results in two space dimensions

All the examples herein use a periodic boundary condition; however, mass is restricted to the interior of the domain. Most
of the examples are taken from LeVeque [15] and Qiu and Shu [22]. For our two-dimensional results, m is the number of grid
cells used in each direction. We report errors measured in the discrete L1

h norm

kun � �unk1;h :¼
X

i;j

1

h2

Z
Fj

Z
Ei

uðx; tnÞdxdy� �un
i;j

�����
�����h2 ð7:1Þ

and a discrete L1h norm. In all cases, the global mass balance error is negligible, as reported in Table 7.2, so we do not other-
wise comment on it.

Our L1h norm is based on a pointwise postprocessing of the two-dimensional discrete solution. We chose to target the cell
centers (xi,yj). As in the y-sweep described in Section 5.2, we first perform high order WENO reconstruction of the solution in
the y-direction targeting the point yj for constant xi. This results in a high order approximation of the average mass in the
interval Ei � {yj}, as noted in (5.17). Then in the x-direction, for each yj, we apply the optional postprocessing described in
Section 3.3. The result is qn

i;j, a high order (i.e., fifth order in our case) pointwise approximation of un
i;j. Thus we define

kun � qnk1;h :¼ sup
i;j

un
i;j � qn

i;j

��� ���: ð7:2Þ
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Fig. 7.5. Example 7. Cross-sections of the numerical solution at (a) x = 1 + h/2, (b) x = 0.5 + h/2, (c) y = 1.35 + h/2, and (d) y = 0.5 + h/2. The true solution is
also shown as a solid line.
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Of course, there is no reason to begin with the y-direction. We could also reconstruct in the x-direction first and then recon-
struct in the y-direction. In fact there is very little difference between these two possibilities, and we report the worse of the
two.

All two-dimensional figures in this section show the results of using an 80 � 80 grid. In our Strang-split, two-dimensional
simulations, the CFL limited time step would be

DtCFL ¼
h

max maxx;yja1ðx; yÞj;maxx;yja2ðx; yÞj
� �

and so, for a given Dt, the CFL number is

CFLDt ¼maxðmax
x;y
ja1ðx; yÞj;max

x;y
ja2ðx; yÞjÞ

Dt
h
:

We use a first order Strang splitting unless otherwise noted.

7.1. Example 5

This example is a two dimensional linear transport. The governing equation is
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Fig. 7.6. Example 8. First order Strang splitting solution at T = 1.5 using Dt = 2h (CFLDt = 4).

0
0.5

1
1.5

2

0

0.5

1

1.5

2
−0.2

0

0.2

0.4

0.6

0.8

1

x
y

(a) Cell average values. (b) Contour plot.

Fig. 7.7. Example 8. Second order Strang splitting solution at T = 1.5 using Dt = 4h (CFLDt = 8).
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ut þ ux þ uy ¼ 0; x 2 ð0;2Þ; y 2 ð0;2Þ; t > 0: ð7:3Þ

The equation is split into two one-dimensional equations, each of which is evolved by the proposed EL–WENO finite volume
method. Note that there is no dimensional splitting error in time and the spatial error is the dominant error. Moreover, In this
case a1 
 a2 
 1, so DtCFL = h.

Table 7.1 gives the L1
h and L1h errors and the corresponding orders of convergence for the smooth solution u(x,y, t) =

sin(px + py � 2pt), using Dt = 2.5h. Very clean fifth order convergence is observed for our fifth order reconstruction, as ex-
pected from the formal convergence theory Theorem 5.2.

We next advect a cross pattern, as shown in Figs. 7.1 and 7.2. It is clear that we have less numerical diffusion error when
Dt is chosen so that grid points are traced back to grid points, as in Fig. 7.1(b), where Dt = 10h, since then the cross pattern
can be represented exactly on the grid, as opposed to Fig. 7.2, where Dt = 10.5h and we are one-half grid cell off each time
step.

7.2. Example 6

The next example is a two dimensional rigid body rotation. The governing equation is
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(a) Cell average values. (b) Contour plot.

Fig. 7.8. Example 8. Second order Strang splitting solution at T = 1.5 using Dt = 8h (CFLDt = 16).
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Fig. 7.9. Example 8. Second order Strang splitting solution at T = 1.5 using Dt = 12h (CFLDt = 24).
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ut � ððy� 1ÞuÞx þ ððx� 1ÞuÞy ¼ 0; x 2 ½0;2�; y 2 ½0;2�; t > 0: ð7:4Þ

The initial condition is a smooth, radial bump function, defined as

uðx; y;0Þ ¼ 2
5
½wð1þ rðx; yÞÞwð1� rðx; yÞÞ þ 1�;

rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2 þ ðy� 1Þ2

q
;

where wðsÞ ¼ e�1=s2 for s > 0 and w(s) = 0 otherwise.
Table 7.2 gives the L1

h and L1h errors, the corresponding orders of convergence, and the global mass balance error, where
Dt = 2h (CFLDt = 2). Very clean fifth order convergence is observed, as expected, and the mass balance error is nonzero due
only to rounding error. For this example, we used a second order in time Strang splitting.

7.3. Example 7

This next example is again a two-dimensional rigid body rotation as in (7.4) of Example 6. However, the initial condition
used now includes a slotted disk, a cone, and a ‘‘smooth’’ hump, similar to that used by LeVeque [15]. The initial condition is
shown in Fig. 7.3.
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Fig. 7.10. Example 8. Cross-sections of the numerical solution at (a) x = 1 + h/2, (b) x = 0.5 + h/2, (c) y = 1.35 + h/2, and (d) y = 0.5 + h/2. The true solution is
also shown as a solid line.
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The numerical solution after six full revolutions of the scheme using Dt = 4h (CFLDt = 4) are shown in Fig. 7.4. One-dimen-
sional cross-sections showing the solution are given in Fig. 7.5, benchmarked with the exact solution. Some oscillation in the
solution is observed. However, it is not due to the difference of integrals needed for the handling of Type 4 subintervals, since
none arose during the computation. We also computed the solution using time steps that were non-integral multiples of h,
e.g., 4.5h, but the results show no significant difference to those shown here.

7.4. Example 8

A more severe test is obtained by using a swirling deformation flow. Following [15], we take the velocity in the form

a1ðx; yÞ ¼ sin2 px
2

	 

sinðpyÞgðtÞ; a2ðx; yÞ ¼ � sin2 py

2

	 

sinðpxÞgðtÞ: ð7:5Þ

This flow satisfies a1 = a2 = 0 on the boundaries of our domain (0,2) � (0,2). The function g(t) is used to introduce time
dependence in the flow field, and we use

gðtÞ ¼ 2 cosðpt=TÞ
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Fig. 7.11. Example 8. Second order Strang splitting solution at time t = 0.75 = T/2 using Dt = 8h (CFLDt = 16).
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Fig. 7.12. Example 9. Solution at time t = 2.5 using Dt = 8h (CFLDt = 8).
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on the time interval 0 6 t 6 T. The flow slows down and reverses direction in such a way that the initial data is recovered at
time T. We use T = 1.5, and the same initial condition as in the previous example, Example 7.

We remark that in [15], Leveque worked over the unit square domain. Compared to his work, we have rescaled both the
velocity field and g(t). Moreover, Qiu and Shu [22] used a similar scaling over the domain (�p,p)2.

The results using a first order Strang splitting are shown in Fig. 7.6. They are not very good, because the splitting error is
large.

The second order Strang splitting improves the result significantly, as shown in Figs. 7.7–7.9 for three different time steps,
Dt = 4 h, 8 h, and 12 h. The results are remarkably good, especially for the largest time step, which has a CFL number of
CFLDt = 24 and therefore is the least numerically diffusive. We also report cross-sectional slices for the Dt = 8h case in
Fig. 7.10, benchmarked with exact solution. Again some oscillation is observed. In this example, Type 4 subintervals do arise.

At time T/2 the initial data is quite deformed. Fig. 7.11 shows the solution at this time using Dt = 8h. The solution is very
similar to that given in [15,22].

7.5. Example 9

As a final example, we use the swirling flow (7.5) of the previous example, but we scale it to the unit square and take
g(t) 
 1. The initial condition is

uðx; y;0Þ ¼ 1 if ðx� 1Þ2 þ ðy� 1Þ2 < 0:82;

0 otherwise:

(
Fig. 7.12 shows the computed solution at time t = 2.5 using Dt = 8h (CFLDt = 8). The level of numerical diffusion on this
80 � 80 grid is extremely low, since it takes only 25 steps to reach the final time.

8. Conclusions

We defined a locally conservative Eulerian–Lagrangian finite volume method with a WENO reconstruction (EL–WENO). It
is a generalization of the Finite Difference Locally Conservative Eulerian–Lagrangian Method [9] and the Characteristics-
Mixed Method [1,2,4]. The fifth order version was worked out in detail. For each time step, the grid points are first traced
backward in time, perhaps using a Runge–Kutta solver. For each grid cell, these trace-back points define the trace-back
set. The mass in the trace-back set advects forward to the new time level over the time step. It is therefore only necessary
to integrate accurately the mass over the trace-back set.

An integration-based, piecewise-polynomial WENO reconstruction was developed to obtain a fifth order representation
of the fluid mass at the previous time level, although other order methods could presumably be developed. To define the
reconstruction, the trace-back set must be decomposed into the fixed Eulerian grid. The definition of the linear weights de-
pends on this decomposition and varies locally. Rules for computing the integrated mass were developed that are fifth order
accurate. Moreover, the scheme was shown to be computationally efficient and locally mass conservative.

Numerical results showed that the optimal fifth order accuracy is obtained for both constant and variable coefficient
cases. Large time steps, greatly exceeding the CFL limit, could be taken by our scheme; in fact, we could take a fixed number
of time steps regardless of the number of cells in the computation, as long as the trace-back points are approximated accu-
rately enough.

Strang splitting was used to handle multidimensional problems. Even though the scheme is based on finite volumes, we
were able to show fifth order spatial accuracy as well as local mass conservation. Numerical results bore these facts out.

Our scheme inherits the high-order accuracy and nonoscillatory property from WENO schemes, and the CFL time step
limit free property and small time truncation error from Eulerian–Lagrangian methods.
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